The Ring Structure of Twisted Equivariant KK-Theory for Noncompact Lie Groups
نویسندگان
چکیده
Let G be a connected semi-simple Lie group with torsion-free fundamental group. We show that the twisted equivariant KK-theory $$KK_{\bullet }^{G}(G/K, \tau _G^G)$$ of has ring structure induced from renowned K-theory $$K^{\bullet }_{K}(K, _K^K)$$ maximal compact subgroup K. give geometric description representatives in terms equivalence classes certain correspondences and obtain an optimal set generators this ring. also establish various properties under some additional hypotheses on application to quantization q-Hamiltonian G-spaces appendix. suggest conjectures regarding relation positive energy representations LG are unitary noncompact case.
منابع مشابه
The ring structure for equivariant twisted K-theory
We prove, under some mild conditions, that the equivariant twisted K-theory group of a crossed module admits a ring structure if the twisting 2-cocycle is 2multiplicative. We also give an explicit construction of the transgression map T1 : H ∗(Γ • ;A) → H((N ⋊ Γ) • ;A) for any crossed module N → Γ and prove that any element in the image is ∞-multiplicative. As a consequence, we prove that, unde...
متن کاملTwisted K–Theory of Lie Groups
I determine the twisted K–theory of all compact simply connected simple Lie groups. The computation reduces via the Freed–Hopkins–Teleman theorem [?] to the CFT prescription, and thus explains why it gives the correct result. Finally I analyze the exceptions noted by Bouwknegt et al [?].
متن کاملTwisted Equivariant K-theory for Proper actions of Discrete Groups
We will make a construction of twisted equivairant K-theory for proper actions of discrete groups by using ideas of Lück and Oliver [16] to expand a construction of Adem and Ruan [1].
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولThe Universal Property of Equivariant Kk-theory
Let G be a locally compact, σ-compact group. We prove that the equivariant KK-theory, KK, is the universal category for functors from G-algebras to abelian groups which are stable, homotopy invariant and split-exact. This is a generalization of Higsons characterisation of (non-equivariant) KK-theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2021
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-04131-w